Humanized TLR4/MD-2 Mice Reveal LPS Recognition Differentially Impacts Susceptibility to Yersinia pestis and Salmonella enterica

نویسندگان

  • Adeline M. Hajjar
  • Robert K. Ernst
  • Edgardo S. Fortuno
  • Alicia S. Brasfield
  • Cathy S. Yam
  • Lindsay A. Newlon
  • Tobias R. Kollmann
  • Samuel I. Miller
  • Christopher B. Wilson
چکیده

Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yersinia pestis is viable with endotoxin composed of only lipid A.

Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can survive without Kdo in its LPS.

متن کامل

NpgRj_Ni_1386 1066..1073

At mammalian body temperature, the plague bacillus Yersinia pestis synthesizes lipopolysaccharide (LPS)–lipid A with poor Tolllike receptor 4 (TLR4)–stimulating activity. To address the effect of weak TLR4 stimulation on virulence, we modified Y. pestis to produce a potent TLR4-stimulating LPS. Modified Y. pestis was completely avirulent after subcutaneous infection even at high challenge doses...

متن کامل

NpgRj_Ni_1386 1..8

At mammalian body temperature, the plague bacillus Yersinia pestis synthesizes lipopolysaccharide (LPS)–lipid A with poor Tolllike receptor 4 (TLR4)–stimulating activity. To address the effect of weak TLR4 stimulation on virulence, we modified Y. pestis to produce a potent TLR4-stimulating LPS. Modified Y. pestis was completely avirulent after subcutaneous infection even at high challenge doses...

متن کامل

The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4.

The lipid A portion has been identified as the active center responsible for lipopolysaccharide (LPS)-induced macrophage activation. However, we found that Salmonella (Salmonella enterica serovars Abortusequi, Minnesota, and Typhimurium) lipid A is inactive in human macrophages, despite its LPS being highly active. Thus we investigated the critical role of polysaccharide in Salmonella LPS-induc...

متن کامل

The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1.

Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012